אלגעברע

פֿון װיקיפּעדיע
שפּרינג צו: נאַוויגאַציע, זוך

אלגעברע (שטאמט פון אראביש: الجـَبـْر "אל-דזשעבאר" וואס מיינט "די טוישונג") איז א געביט אין מאטעמאטיק וואס באהאנדלט אפעראטארן, פונקציעס און רעלאציעס אין געוויסע סטרוקטורן. אין אלגעמיין, באהאנדלט אלגעברע מיט פארשידענע סימבאלן אנשטאט אדער געמישט מיט נומערן.

פראבלעמען אין עלעמענטארע אלגעברע לייזט מען אויס דורך גלייכונגען.

אלגעברא פארנעמט זיך מיט די פאלגנדיגע טעמעס:

עלעמענטארע אלגעברע איז אנדערש פון אריטמעטיק, וואס האנדלט מיט נומערן. עלעמענטארע אלגעברע ניצט בוכשטאבן פאר נומערן וואס זענען אדער אומבאוואוסט אדער קענען האבן מערערע ווערטן. צום ביישפיל, אין דער גלייכונג איז דער אות אן אומבאוואוסטער ווערט, אבער מען קען דערגיין זיין ווערט מיט דעם געזעץ פון אינווערסן: . אין דער גלייכונג E = mc2, זענען די בוכשטאבן און וואריאבלען, און דער בוכשטאב איז א קאנסטאנט וואס באדייט די גיך פון ליכט אין א וואקואום. אלגעברע פארזארגט מעטאדן צו שרייבן פארמלען און לייזן גלייכונגען וואס זענען קלארער ווי דער היסטארישער מעטאד פון שרייבן אלץ מיט ווערטער.

עלעמענטארע אלגעברע ווערט ברייכט בארעכענט שטארק נייטיק כדי צו שטודירן מאטעמאטיק, וויסנשאפט אדער אינזשעניריע, און אויך פאר אנדערע דיסציפלינען ווי מעדיצין און עקאנאמיק.

עטימאלאגיע[רעדאַקטירן | רעדאקטירן קוואַלטעקסט]

דאס ווארט "אלגעברע" איז לאטיין פונעם אראביש ווארט "אַל־דזשאַבר" ("אָפגיסן") און איז גענומען פונעם מאטעמאטיק בוך אל־מאקאלא פֿי היסאב־אל דזשאבר ווא־אל־מוקאבילאה ("עסיי וועגן דער קאמפוטאציע פון אפגיסן און גלייכונג"), געשריבן אינעם 9טן יארהונדערט דורכן בארימטן פערסישער מאטעמאטיקער אל־כוואריזמי, וואס האט געבליט אין באגדאד אין די יארן 813-833, און איז געשטארבן אין 840. מ'האט געברענגט דאס בוך קיין אייראפע און געהאט עס איבערגעזעצט אויף לאטיין אינעם 12טן יארהונדערט; מען האט געגעבן דאס בוך דעם נאמען 'אלגעברע'.

אלגעברע: א צווייג פון מאטעמאטיק[רעדאַקטירן | רעדאקטירן קוואַלטעקסט]

אלגעברע האט אנגעהויבן מיט קאמפוטאציעס גאנץ ענדלעך צו די קאמפוטאציעס פון אריטמעטיק, אבער מיט בוכשטאבן אנטשטאט נומערן.[1] דאס האט דערלויבט באווייזן פון אייגנשאפטן וואס זענען וואר פאר אלע נומערן. למשל, אין דער קוואדראטישער גלייכונג

קענען רעפרעזענטירן נארוועלכע נומערן (בתנאי אז טאר נישט זיין גלייך צו ), דעמאלסט קען מען ניצן די קוואדראטישע פארמל צו דערגיין גאנץ גיך און גרינג די ווערטן פון דעם אומבאוואוסטן קוואנטיטעט וואס באפרידיקט די גלייכונג; ד״ה מען קען געפינען אלע לייזונגען פון דער גלייכונג.

רעפערענצן[רעדאַקטירן | רעדאקטירן קוואַלטעקסט]

  1. Boyer 1991, "Europe in the Middle Ages" p. 258 "In the arithmetical theorems in Euclid's Elements VII-IX, numbers had been represented by line segments to which letters had been attached, and the geometric proofs in al-Khwarizmi's Algebra made use of lettered diagrams; but all coefficients in the equations used in the Algebra are specific numbers, whether represented by numerals or written out in words. The idea of generality is implied in al-Khwarizmi's exposition, but he had no scheme for expressing algebraically the general propositions that are so readily available in geometry."