פאקטאריזאציע

פֿון װיקיפּעדיע
שפּרינג צו: נאַוויגאַציע, זוך

אין מאטעמאטיק פֿאַקטאָריזאַציע (ענגליש: factorization) איז א וועג פון צענעמען א מאטעמאטישע צאל אויף עלעמענטן, וועלכע הייסן פאקטארן, אויף א פאל וואס ווען מען טאפלט די פאקטארן איינס מיט די אנדערע באקומט מען די ארגינעלע צאל.

צום ביישפיל דער נומער 6936 קען מען צעלײגן אזוי: 172 · 3 · 23 = 6936  

דאס זעלבע איז אויב מיר האבן א פאלינאם x2 - 4, קען מען צענעמען צו די פאקטארן אזוי: (x - 2)(x + 2) לויט א באשטימטע פארמולע.

די וועג צו פאקטאריזירן[רעדאַקטירן | רעדאקטירן מקור]

אויב מיר האָבן, למשל, אַ צוזאַמענגעזעצטע צאָל: , און מיר ווילן וויסן וואָס זײַנען זײַנע פאַקטאָרן, טיילן מיר אפ דעם פיר צום גרעסטן נומער וואס מען קען צעטיילן אויף א פאל זאל בלײַבן א נאַטירלעכע צאָל (אויסער מיט 4 אליין), וואָס דאָס איז און מיר באקומען די פאַקטאָריזאַציע: .

לאמיר נעמען מער א קאמפליצירטער נומער: . מיר זוכן דעם גרעסטן נומער וואס קען אפטיילן דעם 30, וואס דאס איז (ווייל ). נאכער זוכן מיר וואס איז דער גורם צו די נומערן 3 און 10, וועלן מיר טרעפן אז 3 איז א פרימצאל וואס מע קען נישט צעטיילן, און נאר דעם 10 קען מען צעטיילן אויף , אזוי ווייסן מיר אז דער גורם צו 30 איז: .

פאקטאריזירן דורך ארויסנעמען א געמיינזאמער פאקטאר[רעדאַקטירן | רעדאקטירן מקור]

אויב מיר האבן א חשבון מיט צוגאב און/אדער אראפנעם, צום ביישפיל: און מיר ווילן דאס צעגלידערן אויף פאקטארן, זוכן מיר וועלכער גרעסטער נומער קען צוברענגען סיי צו נומער און סיי צו נומער (מיט אנדערע ווערטער, וואס איז דער געמיינזאמער פאקטאר), וועלן מיר טרעפן אז איז די לייזונג, ווייל איז , און איז . א צינד צעטיילן מיר דעם אונד דעם מיטן געמיינזאמער פאקטאר (וואס דאס איז דער 4), און מיר שרייבן עס אזוי: אזוי האבן מיר בעצם פאקטאריזירט די ארגינעלע צאל.