רעזומע
Display
01) Coordinate time (GM/c^3) 11) BL r coordinate (GM/c^2) 21) Radius of gyration (GM/c^2) 31) Observed framedragging rate (c^3/G/M)
02) Affine parameter (GM/c^3) 12) BL φ coordinate (radians) 22) Cartesian radius (GM/c^2) 32) Local framedragging velocity (c)
03) 1st derivative (dt/dτ) 13) BL θ coordinate (radians) 23) BH Irreducible mass (M) 33) Cartesian framedragging velocity (c)
04) Grav. time dilation (dt/dτ) 14) dr/dτ (c) 24) Kinetic energy (hf) 34) Proper velocity (c, dl/dτ)
05) Local energy (dt/dτ, mc^2) 15) dφ/dτ (c^3/G/M) 25) Potential energy (hf) 35) Observed velocity (c, d{x,y,z}/dt)
06) Cartesian radius (GM/c^2) 16) dθ/dτ (c^3/G/M) 26) Total energy (hf) 36) Escape velocity (c)
07) x Axis (GM/c^2) 17) d^2r/dτ^2 (c^6/G/M) 27) Carter constant (GMhf/c^3) 37) Local r velocity (c)
08) y Axis (GM/c^2) 18) d^2φ/dτ^2 (c^6/G^2/M^2) 28) φ angular momentum (GMhf/c^3) 38) Local θ velocity (c)
09) z Axis (GM/c^2) 19) d^2θ/dτ^2 (c^6/G^2/M^2) 29) θ angular momentum (GMhf/c^3) 39) Local φ velocity (c)
10) travelled distance (GM/c^2) 20) Spin parameter (GM^2/c) 30) Radial momentum (hf/c) 40) Total local velocity (c)
Equations of motion
All formulas come in natural units:
G
=
M
=
c
=
1
{\displaystyle {\rm {G=M=c=1}}}
Coordinate time by proper time (dt/dτ):
t
˙
=
2
E
r
(
a
2
+
r
2
)
−
2
a
L
z
r
Δ
Σ
+
E
=
ς
1
−
v
2
{\displaystyle {\rm {{\dot {t}}={\frac {2\ E\ r\ \left(a^{2}+r^{2}\right)-2\ a\ L_{z}\ r}{\Delta \ \Sigma }}+E={\frac {\varsigma }{\sqrt {1-v^{2}}}}}}}
Radial coordinate time derivative (dr/dτ):
r
˙
=
Δ
p
r
Σ
{\displaystyle {\rm {{\dot {r}}={\frac {\Delta \ p_{r}}{\Sigma }}}}}
Time derivative of the covariant momentum's r-component (pr/dτ):
p
˙
r
=
(
r
−
1
)
(
μ
(
a
2
+
r
2
)
−
k
)
+
2
E
2
r
(
a
2
+
r
2
)
−
2
a
E
L
z
+
Δ
μ
r
Δ
Σ
−
2
p
r
2
(
r
−
1
)
Σ
{\displaystyle {\rm {{\dot {p}}_{r}={\frac {(r-1)\left(\mu \ \left(a^{2}+r^{2}\right)-k\right)+2\ E^{2}\ r\left(a^{2}+r^{2}\right)-2\ a\ E\ L_{z}+\Delta \ \mu \ r}{\Delta \ \Sigma }}-{\frac {2\ p_{r}^{2}\ (r-1)}{\Sigma }}}}}
Relation to the local velocity:
p
r
=
v
r
1
+
μ
v
2
Σ
Δ
{\displaystyle {\rm {p_{r}={\frac {v_{r}}{\sqrt {1+\mu \ v^{2}}}}{\sqrt {\frac {\Sigma }{\Delta }}}}}}
Latitudinal time derivative (dθ/dτ):
θ
˙
=
p
θ
Σ
{\displaystyle {\rm {{\dot {\theta }}={\frac {p_{\theta }}{\Sigma }}}}}
Time derivative of the covariant momentum's θ-component (pθ/dτ):
p
˙
θ
=
sin
θ
cos
θ
(
L
z
2
/
sin
4
θ
−
a
2
(
E
2
+
μ
)
)
Σ
{\displaystyle {\rm {{\dot {p}}_{\theta }={\frac {\sin \theta \ \cos \theta \left(L_{z}^{2}/\sin ^{4}\theta -a^{2}\left(E^{2}+\mu \right)\right)}{\Sigma }}}}}
Relation to the local velocity:
p
θ
=
v
θ
Σ
1
+
μ
v
2
{\displaystyle {\rm {p_{\theta }={\frac {v_{\theta }\ {\sqrt {\Sigma }}}{\sqrt {1+\mu \ v^{2}}}}}}}
Longitudinal time derivative (dФ/dτ):
ϕ
˙
=
2
a
E
r
+
L
z
csc
2
θ
(
Σ
−
2
r
)
Δ
Σ
{\displaystyle {\rm {{\dot {\phi }}={\frac {2\ a\ E\ r+L_{z}\ \csc ^{2}\theta \ (\Sigma -2r)}{\Delta \ \Sigma }}}}}
Time derivative of the covariant momentum's Ф-component (pФ/dτ):
p
˙
ϕ
=
0
{\displaystyle {\rm {{\dot {p}}_{\phi }=0}}}
Carter-constant (I is the orbital inclination angel):
Q
=
p
θ
2
+
cos
2
θ
(
a
2
(
μ
2
−
E
2
)
+
L
z
2
sin
2
θ
)
=
a
2
(
μ
2
−
E
2
)
sin
2
I
+
L
z
2
tan
2
I
{\displaystyle {\rm {Q=p_{\theta }^{2}+\cos ^{2}\theta \left(a^{2}(\mu ^{2}-E^{2})+{\frac {L_{z}^{2}}{\sin ^{2}\theta }}\right)=a^{2}\ (\mu ^{2}-E^{2})\ \sin ^{2}I+L_{z}^{2}\ \tan ^{2}I}}}
Carter k (constant):
k
=
a
2
(
E
2
+
μ
)
+
L
z
2
+
Q
{\displaystyle {\rm {k=a^{2}\left(E^{2}+\mu \right)+L_{z}^{2}+Q}}}
Total energy (constant):
E
=
(
Σ
−
2
r
)
(
θ
˙
2
Δ
Σ
+
r
˙
2
Σ
−
Δ
μ
)
Δ
Σ
+
ϕ
˙
2
Δ
sin
2
θ
=
Δ
Σ
(
1
+
μ
v
2
)
χ
+
Ω
L
z
{\displaystyle {\rm {E={\sqrt {{\frac {(\Sigma -2\ r)\left({\dot {\theta }}^{2}\ \Delta \ \Sigma +{\dot {r}}^{2}\ \Sigma -\Delta \ \mu \right)}{\Delta \ \Sigma }}+{\dot {\phi }}^{2}\ \Delta \ \sin ^{2}\theta }}={\sqrt {\frac {\Delta \ \Sigma }{(1+\mu \ v^{2})\ \chi }}}+\Omega \ L_{z}}}}
Angular momentum on the Ф-axis (constant):
L
z
=
sin
2
θ
(
ϕ
˙
Δ
Σ
−
2
a
E
r
)
Σ
−
2
r
=
v
ϕ
R
¯
1
+
μ
v
2
{\displaystyle {\rm {L_{z}={\frac {\sin ^{2}\theta \ ({\dot {\phi }}\ \Delta \ \Sigma -2\ a\ E\ r)}{\Sigma -2\ r}}={\frac {v_{\phi }\ {\bar {R}}}{\sqrt {1+\mu \ v^{2}}}}}}}
with the radius of gyration
R
¯
=
χ
Σ
sin
θ
{\displaystyle {\rm {{\bar {R}}={\sqrt {\frac {\chi }{\Sigma }}}\ \sin \theta }}}
Frame Dragging angular velocity (dФ/dt):
ω
=
2
a
r
χ
{\displaystyle {\rm {\omega ={\frac {2\ a\ r}{\chi }}}}}
Gravitational time dilation (dt/dτ):
ς
=
χ
Δ
Σ
{\displaystyle {\rm {\varsigma ={\sqrt {\frac {\chi }{\Delta \ \Sigma }}}}}}
Local velocity on the r-axis:
v
r
1
+
μ
v
2
=
r
˙
Σ
Δ
{\displaystyle {\rm {{\frac {v_{r}}{\sqrt {1+\mu \ v^{2}}}}={\dot {r}}\ {\sqrt {\frac {\Sigma }{\Delta }}}}}}
Local velocity on the θ-axis:
v
θ
Σ
1
+
μ
v
2
=
θ
˙
Σ
{\displaystyle {\rm {{\frac {v_{\theta }\ {\sqrt {\Sigma }}}{\sqrt {1+\mu \ v^{2}}}}={\dot {\theta }}\ \Sigma }}}
Local velocity on the Ф-axis:
v
ϕ
1
+
μ
v
2
=
L
z
R
¯
ϕ
{\displaystyle {\frac {\rm {v_{\phi }}}{\sqrt {1+\mu \ {\rm {v^{2}}}}}}={\frac {\rm {L_{z}}}{\rm {{\bar {R}}_{\phi }}}}}
with the cartesian coordinates:
x
=
r
2
+
a
2
sin
θ
cos
ϕ
,
y
=
r
2
+
a
2
sin
θ
sin
ϕ
,
z
=
r
cos
θ
{\displaystyle {\rm {x={\sqrt {r^{2}+a^{2}}}\sin \theta \ \cos \phi \ ,\ y={\sqrt {r^{2}+a^{2}}}\sin \theta \ \sin \phi \ ,\ z=r\cos \theta \quad }}}
The observed velocity β is given by:
β
=
(
d
x
/
d
t
)
2
+
(
d
y
/
d
t
)
2
+
(
d
z
/
d
t
)
2
{\displaystyle {\rm {\beta ={\sqrt {(dx/dt)^{2}+(dy/dt)^{2}+(dz/dt)^{2}}}}}}
The local escape velocity is given by the relation:
ς
=
1
/
1
−
v
e
s
c
2
→
v
e
s
c
=
ς
2
−
1
/
ς
{\displaystyle {\rm {\varsigma =1/{\sqrt {1-v_{\rm {esc}}^{2}}}\ \to \ v_{\rm {esc}}={\sqrt {\varsigma ^{2}-1}}/\varsigma }}}
Shorthand Terms:
Σ
=
a
2
cos
2
θ
+
r
2
,
Δ
=
a
2
+
r
2
−
2
r
,
χ
=
(
a
2
+
r
2
)
2
−
a
2
sin
2
θ
Δ
{\displaystyle {\rm {\Sigma =a^{2}\cos ^{2}\theta +r^{2}\ ,\ \ \Delta =a^{2}+r^{2}-2r\ ,\ \ \chi =\left(a^{2}+r^{2}\right)^{2}-a^{2}\ \sin ^{2}\theta \ \Delta }}}
Sources: [ 1] [ 2] [ 3] [ 4] [ 5] [ 6]
References
↑ Pu, Yun, Younsi & Yoon: General-relativistic radiative transfer in Kerr spacetime , p. 2+
↑ Janna Levin & Gabe Perez-Giz: A Periodic Table for Black Hole Orbits , p. 30+
↑ Scott A. Hughes: Nearly horizon skimming orbits of Kerr black holes , p. 5+
↑ Janna Levin & Gabe Perez-Giz: The Phase Space Portrait , p. 2+
↑ Misner, Thorne & Wheeler (MTW): The Bible archive copy at the Wayback Machine , p. 897+
↑ Simon Tyran: Kerr Orbits / Gravitationslinsen
ליצענץ:
אני, בעל זכויות היוצרים על עבודה זו, מפרסם בזאת את העבודה תחת הרישיון הבא:
איר מעגט:
באַטייליקן – קאפירן, פֿאַרשפרייטן און איבערשיקן די ווערק
ווידערמישן – באַאַרבעטן די ווערק
אונטער די פאלגנדע תנאָים:
צושרײַבונג – איר מוזט צושרײַבן די ווערק אויפן שטייגער ספעציפֿירט דורכן שאַפֿער אדער ליצענץ־האַלטער (אבער נישט אין אזוינעם אופן אַז עס זעט אויס אַז זיי שטיצן אונטער אײַך אדער אײַער ניץ פון דער ווערק).
טיילן גלײַך – אז איר וועט ענדערן, פארוואנדלען איר צולייגן צו דער דאזיגער ווערק, טארט איר דאך נאר טיילן די ווערק אונטער דעם זעלבן אדער ענלעכן ליצענץ צו דעם. https://creativecommons.org/licenses/by-sa/4.0 CC BY-SA 4.0 Creative Commons Attribution-Share Alike 4.0 true true
File usage
187
189
8
8
758
500
inner ergosphere and ring singularity
ייִדיש נא להוסיף משפט שמסביר מה הקובץ מייצג
ענגליש Photon orbit around an extremal Kerr black hole
דײַטש Photonenorbit um ein maximal rotierendes schwarzes Loch